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ABSTRACT

Structural models are examined for the influence of a ring with an asymmetrical

cross section on the linear elastic response of an orthogonally stiffened cylindrical

shell subjected to internal pressure. The first structural model employs classical

theory for the shell and stiffeners. The second model employs transverse shear

deformation theories for the shell and stringer, and classical theory for the ring.

Closed-end pressure vessel effects are included. Interacting line load intensities

are computed in the stiffener-to-skin joints for an example problem having the

dimensions of the fi:selage of a large transport aircraft. Classical structural theory

is found to exaggerate the asymmetric response compared to the transverse shear

deformation theory.

INTRODUCTION

The cabin pressurization in a transport aircraft causes about a 10 psi pressure

differential across the skin. An unstiffened, or a monocoque fuselage would carry

this internal pressure load as a shell in membrane response, like a pressure ves-

sel. However, internal longitudinal and transverse stiffeners are necessary to carry

loads due to flight maneuvers, landing and ground handling, etc. How the loads

are transferred in the stiffener-to-skin joints under pressurization is necessary for

determining the load capacity of these joints.

* Graduate Research Assistant, Aerospace and Ocean Engineering
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The design of stiffener-to-skin joints was cited by Jackson, et al. (1984) as

one of the major technology issues in utilizing graphite/epoxy composites in the

fuselage of a large transport aircraft. Stiffeners can be attached to the skin by

either fasteners, co-curing, adhesive bonding, or some combination of these methods.

Where fasteners are required in a graphite/epoxy structure, aluminium fasteners

cannot be used because of galvanic corrosion to the metal. More expensive fasteners,

like titanium, are required to avoid corrosion.

A ring, or frame, with asymmetrical cross section is commonly used as a trans-

verse stiffening member in the fuselage of a transport aircraft. The influence of this

ring asymmetry on the distribution of the interacting loads in the stiffener-to-skin

joint is the subject of this paper. Two structural models are considered. The first

model employs classical theory for the shell and the stiffeners. The second model

employs transverse shear deformation theories for the shell and stringer, and classi-

cal theory for the ring. We have previously published results for the response with

symmetrical section rings and stringers using classical theory (Johnson and Rastogi,

1994).

Hence, the objective of this paper is to examine structural models for the linear

elastic response of an orthogonally stiffened, composite material cylindrical shell

subjected to internal pressure, where the ring has an asymmetrical cross section

and the stringer has a symmetrical cross section. This objective is part of a larger

effort to develop an analysis/design capability for the stiffener-to-skin joint of a

large transport aircraft. A potential benefit of such an analysis/design capability is

to use fewer expensive fasteners in the graphite/epoxy fuselage.

MATHEMATICAL MODEL

An idealized mathematical model is assumed for the semi-monocoque fuselage

to study the generic characteristics of the response in the vicinity of the stiffeners'

intersection. The model is of a very long circular cylindrical shell internally stiffened

by identical stringers equally spaced around the circumference, and identical frames
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or rings, equally spaced along the length. In general, the spacing of the stringers is

not the same as that of the rings. The structure is periodic both longitudinally and

circumferentially, and the loading is spatially uniform. Consequently, a structural

repeating unit can be defined whose deformation determines the deformation of the

entire structure. A typical repeating unit consists of a portion of the shell wall

centered over the portions of stringer and ring as shown in Fig. 1. The radius of

the middle surface of the undeformed cylindrical shell is denoted by R, and the

thickness of the shell is denoted by t. Axial coordinate z and the circumferential

angle 0 are lines of curvature on the middle surface, and the thickness coordinate

is denoted by z, with -t/2 <_ z <_ t/2. The origin of the surface coordinates is

centered over the stiffeners intersection so that -l _< z _< l and -® <_ 0 _< 19, where

2l is the axial length, and 2RO is the circumferential axe length of the repeating

unit.

The stiffeners axe mathematically modeled as one-dimensional elements, or dis-

crete beams, so that the actions transmitted by the stiffeners to the inside of the

shell wall are represented by distributed line load intensities. In this paper it is

assumed that the stringer is symmetric about the z-z plane through its centroidal

axis and the ring is asymmetric. On the basis of the symmetry about the z-axis

for the unit, only the interacting line load components tangent and normal to the

stringer are included in the analysis. However, due to an asymmetric ring, the

interacting line loads between shell and the ring consist of three distributed force

components and a tangential distributed moment component. The shell-stringer

interacting force components per unit length along the contact lines are denoted

by A_s(x) for the component tangent to the stringer and _s(z) for the component

normal to the stringer. The three shell-ring interacting force components per unit

length along the contact lines axe denoted by £_r(0) for the component acting in

the axial direction, A0r(0) for the component tangent to the ring, and )_z_(0) for

the component normal to the ring. The shell-ring interacting moment component,

tangent to the ring, per unit length along the contact line is denoted by Ao_(O).



These interacting loads acting in a positive sense on the inside surface of the shell

are shown in Fig. 2. The purpose of the analysis is to determine these distributed

line load intensities and also, to examine the differences in their distribution for the

two structural models described earlier.

For both models, the linear elastic response of the repeating unit to internal

pressure is obtained by utilizing Ritz method and the principle of virtual work

applied separately to the shell, stringer, and ring. The virtual work functionals are

augmented by Lagrange multipliers to enforce kinematic constraints between the

structural components of the repeating unit. The Lagrange multipliers represent

the interacting line loads between the stiffeners and the shell. Displacements are

separately assumed for the shell, stringer, and the ring.

TRANSVERSE SHEAR DEFORMATION FORMULATIONS

Shell

A consistent first order transverse shear deformation theory is developed to

model the shell. Based on the assumption that the shell thickness t is relatively

small and hence, does not change during loading, the displacements at an arbitrary

material point in the shell are approximated by

U(x,O,z) = u(x,O)+ zCx(x,o) (1)

V(x,O,z) = v(x,o) + z¢o(_,o) (2)

W(x,O,z) = w(x,O) (3)

where u(x,O), v(x,O) and w(x,O) are the displacements of the points of the ref-

erence surface, and ¢_(x,0) and ¢o(x,O) are the rotations of the normal to the

reference surface as shown in Fig. 3(a.). Using Eqs. (1) to (3) and assuming small

displacement gradients, the three-dimensional engineering strains are

_oo + zt_o0

_x_ = _+z_ _oo - (1+_) _. = o (4)
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6xe

z 2

(1+_) (5)

7e_ (6)
eez = (I+R)

and eez represent average transverse shearing

_xz _ _z

The transverse shear strains exz

strains through the thickness of the shell since Eqs. (1) to (3) are approximate

in the z-coordinate. In Eqs. (4) to (6), the two-dimensional, or shell, strain mea-

sures, which are independent of the z-coordinate, are defined by

0u 0¢_ (7)

10v w 1 c9¢e

eee - R 06 + R _ee - R 00 (8)

Ov 10u

7_o = _xx + R 0--_ (9)

c9¢e 1 0¢_ 10v (10)_0 = o--_+ _ 0-7 + _ o_

OCe 1 0¢_ 10v (11)
;_e - Ox R O_ R Ox

7_ = ¢_ +-
Ow v 10w

0x 7e_ = Ce- _ + _ 0--_ (12)

(6) to zero, then theIf we set the (average) transverse shear strains in Eq.

rotations of the normal are

_W

¢_- Ox (13)

v 10w

Ce - R n 00 (14)

so that
2 02w 20v

_,o = _,o - R Ox08 + R 0---_ k,e = 0 (15)

Hence, the thickness distribution of the shear strain reduces to

R

(16)

which coincides with the results of Novozhilov's (1964) classical shell theory.



It is evident from Eq. (5) that three shell strain measuresare neededto rep-

resent the shear strain distribution through the thickness in the transverse shear

deformation shell theory. Whereas,only two shell strain measuresare required in

classicalshell theory to representthe shearingstrain distribution through the thick-

ness(refer to Eq. (16)). Also it canbe shownthat under rigid body rotation of the

shell, the nine shell strain measures,given by Eqs. (7) through (12) vanish. (For

Novozhilov's classicalshell theory, six shell strain measuresgiven by Eqs. (7-9) and

(15) vanish under rigid body rotations).

The physical shell stressresultants and stresscouplesin terms of stresscompo-

nents are given, in usual way, by

(Nxx, Mxx) = (1, z)a_(1 + dz

(Noo, Moo) =f(1, z)a00 dz

f z(Nxo, M_:o) = (1, z)axo(l+ _) dz

(Nox, Mo_) = f(1,z)ao_ dz

S zO.= + dz

A generalized 9 x 1 stress vector for the shell is defined by

(17)

Ysh¢tt = [N_x, Noo, No_, Mx,_, Moo, M_o, M_o, Q_, Qo] r (18)

in which 2t:/x0 and/V/_0 are the mathematical quantities conjugate to the modified

twisting measures k_0 and kx0, respectively, and are defined in terms of the physical

stress couples by

1 M
Mxo = -_( _o + Mo_ )

1 M
f/ixo = -_( _o - Mo_ ) (19)



The nine elements of the stress vector in Eq. (18) and the relations of Eq. (19)

determine all the stress resultants and stress couples listed in Eq. (17) except for

shear resultant N_o. The shear stress resultant N_0 is determined from moment

equilibrium about the normal for an element of the shell. This so-called sixth

equilibrium equation is
Mox

Nro = No_ + -- (20)
R

The generalized strain vector for the shell is

_shell = [exx, EO0, 7xO, t_xx, _00, _x0, kxO,"Yxz, 70z] T (21)

This strain vector is conjugate to the stress vector in the sense that the internal

virtual work for the shell is given by

/.g

lA_int _ i i _-STr" shell _£shelt _shell dS (22)
JJs

where 5' denotes the area of the reference surface and dS = dxRdO. This expression

for the internal virtual work can be derived from three-dimensional elasticity theory

by using Eqs. (4) to (6) for the thickness distributions of the strains and the

definitions of the resultants given by Eqs. (17) and (19).

Consistent with the transverse shear deformation theory, the linear elastic con-

stitutive law for a laminated composite shell wall is given by

• NX x •

Noo
Not

mxx

Moo

M_o

All

A12

Aa6

= Bal

B12

Bl 6

A12 Aas Bll el2 B_6 B126

A22 A2_ B12 B22 B16 B26

A26 A66 B61 B62 B16 B26

B12 B61 Daa D12 O16 026

B22 B6z Da2 D22 D16 026

B_6 B_ DI6 D_6 D_ D_

B_6 B_ D_6 D_6 D_ 0622

_'XX

£00

i "/:cO

1 _xz '

KxO

(23)

and

{Q_} [A44 A45] {7_ }Qo = A4s Ass 7o_
(24)



in which stiffnessesAij, Bij and Dij are given in Appendix. The transverse shear

stiffnesses, A44, A45, and A55 can be calculated by two different methods. The first

method is based on the assumption of constant transverse shear strain distribu-

tion through the thickness, and the second method is based on the assumption of

constant transverse shear stress distribution through the thickness. In the present

analysis, we have used the first method to compute the transverse shear stiffnesses.

The statement of virtual work is

r Vshel I = -, . p + (25)

where the external virtual work for a cylindrical shell under constant internal pres-

sure, including an axial load due to the closed-end effect, is written as

¢_l/_ez t //S• .p = p _w dS

@

+ Pf R'd°2 (26)
-0

and the external (or augmented) virtual work due to the interacting loads is

l

-l

0

+i E,.(o,o)-;-,+.¢o,o)1+,o.(o)E,.(o,o)-;-,+o(o,o)l
-O

Ow _)dO [,_,41,o) ,_,_(-l,+ A_.(O)3w(O,O)- ao,.(O)_(_ z :,:=o)} (R- -Q - 0)]

(27)

The axial force Q in Eq. (27) is an additional Lagrange multiplier that accounts

for axial load sharing betweenthe stringer and shell.

Stringer

Stringer displacements u_(x) and ws(x), and the rotation of the normal ¢0_(x)

are shown in Fig. 3(b). Based on transverse shear deformation theory, the virtual



work expression for the stringer is

l

-l

+ MosSt{os + Vs57zs]dx =

l

-l

+ ,_s(x)Sws(x)} dx +Q[Sus(I)-Sus(-l)]

(2s)

in which Nxs is the axial force in the stringer, Mos is the bending moment, Vs is the

transverse shear force, e_s is the normal strain of the centroidal line, the product

z_o_ is the portion of the axial normal strain due to bending, 7_, is the transverse

shear strain, and es is the radial distance from the stringer centroid to the contact

line along the shell inside surface. The strain-displacement relations and Hooke's

law for the stringer are

t !
ex_ = us _0s = ¢ 0s 7z_ = ¢0s + w's (29)

N,s = (EA)_e,s Mos = (EI)_ao_ V_ = (GA)_7_s

in which the prime denotes an ordinary derivative with respect to x.

CLASSICAL FORMULATIONS

(30)

Shell

The shell is modeled with Sanders' (1959) theory for thin shells. Define a gen-

eralized strain vector in terms of the shell strain measures by

e'sh_u = [e_, e00,7_0, _, zoo, _x0]r (31)

The first five strain measures of the shell reference surface in Eq. (31) are related

to the displacements by Eqs. (7-9), and the sixth strain measure, _0, is given by

0¢0 1 0¢x 1
t{_0 = O---_-+ R O---0-+ Re (32)

where the rotation about the normal, ¢, is

10v 10u

¢ = 2(Ox R O0 ) (33)
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and the rotations ¢_ and ¢0 of the normal are given by Eqs. (13) and (14).

Define a generalized stress vector in terms of the stress resultants and couples

of Sanders' theory by

Y_h_U = [N**, Noo, N_o, M**, Moo, M_o] T (34)

such that the internal virtual work is given by Eq. (22). Quantities NSo and M_o are

the modified shear resultant and twisting moment resultant in the Sanders theory.

Hooke's law for a laminated composite shell wall is

_sheu = Hfshett H = BT (35)

in which the 3 x 3 sub-matrices A, B and D are given by classical lamination theory

(Jones, 1975). The external virtual work expressions for the classical shell theory

are still given by Eqs. (26) and (27), but the rotations in Eqs. (27) are given by

Eqs. (13) and (14).

Stringer

The stringer is modeled with Euler-Bernoulli beam theory thereby neglecting

the transverse shear strain. Hence, equating 7zs in Eq. (29) to zero results in the

following expression for ¢0,.

¢0_ = -w'_ (36)

It may be noted that neglecting the transverse shear strain would also modify the

virtual work statement given by Eq. (28), and the third equation in the Hooke's

law, Eq. (30), is neglected.

Ring

Ring displacements are denoted ur(0), v.,.(O), and w_(0), and the rotations are

denoted by ¢_(0), ¢0,-(0), and Cz_(0) as shown in Fig. 3(c). The structural model
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is basedon Euler-Bernoulli hypotheses.The statement of virtual work is

O

f [NorSeo,. + Mx,.5_,r + Mz,.5_z,. + T,.Sr,.]Ro dO =

-0

o (37)

f {_=,.(o)[_u,.(o)+_,._+,.(o)]+ _o,.(o)[sv,.(o)+_¢.(o)]
-O

+ A0,.(0)_+0,.(0)}(1+ _) R060+ )%,.( 0 )5w,.( 0 )

in which No,- is the circumferential force, Mx,. is the in-plane bending moment,

M_,. is the out-of-plane bending moment, T,. is the torque, e0,. is the circumferential

normal strain of the centroidal arc, _,. is the change in curvature due to in-plane

bending, _;z,. is the change in curvature due to out-of-plane bending, r_ is the twist

rate, e,. is the distance from the ring reference arc to the contact line along the

shell inside surface, and R0 is the radius of ring reference arc. The rotations and

strain-displacement relations are

1 . _¢ Rol (¢z_-¢o,.)= _(v,. + _,.) _. = __ _,. __Or

1 1

1 (¢0,. + Cz_) ¢=,. = R---_(v,. - _G) ¢_,. _ i_,-r,.- R0 R0

(38)

in which ¢_ is the rotation around x-axis, ¢_,. is the rotation around z-axis, and

the over-dot denotes an ordinary derivative with respect to 0. Hooke's law is

No,- = (EA),.eo,. Ms,- = (EI_=_),.ax,. - (EI, x),.a_,-

M_,. = (EI_z),.g,,. - (EI_:_),.t%=,. T,. = (Gd),.rr

(39)

DISPLACEMENT CONTINUITY

In order to maintain continuous deformation between the inside surface of the

shell and stiffeners along their lines of contact, the following displacement continuity

constraints are imposed:

Along the shell - stringer interface (i.e., -l <_ x <: l, 0 = 0),

g:: = _(z, 0) - _-¢=(_,0)- [_(z) + _¢0_(x)] = 0 (40)
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gz_=w(x,O)-ws(x) =0 (41)

Along the shell - ring interface (i.e., x = 0, -0 _< 0 _< O),

g,:r = u(0, O) - 2¢,:(0,0)- [ur(O) + er¢sr(8)] = 0 (42)

t

ge_ = v(O,O)- _¢0(0,0) - [v_(O)+ e_¢,:_(O)] = 0 (431

gzr=w(O,O)-w,.(O)=O (441

cOw (45)
Go_ - Ox x=0 - ¢0_(0) = 0

The variational form of these constraints are

1

/ [SA,:sg,:s + 5A_sg_s] dx = 0 (46)

-1

0

/ [SA,:_g,:r + 6Aorgo,- + 6A_,.gz,. + 6Ao,.Go,-] (Ro + e_) dO = 0 (47)

-0

The constraint that the elongation of the shell at 0 = 0 and the elongation of

the stringer are the same is

5Q{[u(l,O)-u(-/,O)]- [us(1)-us(-/)]} = 0 (48)

DISPLACEMENTS, ROTATIONS, AND INTERACTING

LOAD APPROXIMATIONS

The periodic portions of the displacements and rotations are represented by

truncated Fourier Series having fundamental periods in the stringer and ring spac-

ing. The non-periodic portions of the displacements due to axial stretching are

represented by simple terms in x. The Fourier series reflect symmetry about the

x-axis for the repeating unit. For the shell, displacements of the middle surface (see

Fig. 33) are represented as

M N M N

u(x,O)- qox Z Z F_. u2m.Co4 mx)Co4 .O)
21 rn----1 n-_0 m=l n---1

(49)
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M N M N

V(x,O) = E Z UlrnnC°N(°_mX)Si?'l(_nO)+ Z Z V.2m,,Sin(a',,,x)Sin(/3,,O) (50)
m=0 n=l m=l n=l

M N M N

w(x,O)= Z Wlm.CO ( mX)Cos(a.O)+Z   moSi.( mx)Cos(a°O)
m=0 n=0 rn=l n=l

(51)

and rotations of the normal are

M N M N

Cx(x,O) = E E CxlmnSin(°_mx)C°s(flnO) + E E Cz2mnC°s(C_mx)C°s(anO)

m=l n=0 m=l n=l

(5_9)
M N M N

¢O(x,O) = Z E ¢°lrnnC°s(CtrnX)Sin(ZnO) + Z E ¢02mnSin(O_rnX)Sin(_nO)

m=0 n=l m=l n=l

(53)

,-n,_ and an n,_ where m and n are non-negative integers. Notein which O_m l

that some terms in the truncated Fourier Series of Eqs. (49-53) have been omitted.

The coefficients of the omitted terms are u200, U2r,0, U20,, W2m0, ¢_200, Cx2m0, and

¢_20n, in which m = 1, 2, ..., M and n = 1, 2, ..., N. The rationale for their omission

is discussed in the following sub-section. The displacements of the centroidal line

of stringer (see Fig. 3b) are

M M

qlX mSin(oLmX) + Z Us2mCos(amX) (54)its(X) - "_l "JI- E Usl
m=l rn=l

M M

Ws(X)--= E WslmSitl(O_mX) + E Ws2mCos((_mX)

rrt _1 rn _ l

and the rotation of the normal of the stringer about the P-axis is

(55)

M M

(_Os(X) = E #)OslmSin(°_mX) -_- Z +Os2mC°s(°LmX)

m=l m=l

(56)

where the coeffcients us20 , ws2o and ¢0s20 are omitted. Coefficient q0 in the axial

displacement field of the shell and ql in the axial displacement field of the stringer

represent elongations of each respective element caused by either an axial mechanical
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load or due to close-endpressurevesseleffects. The displacementsof the reference

circle of the ring (seeFig. 3c) are

N

ur(o)= _ ur.Co4a.o)
n=l

(57)

N

vr(O)= _ vr.Si.(Z.o)
n=l

(58)

N

wr(o)= _ wr.Co4Z.o)
n----0

(59)

and twist of the ring is
N

¢o,-(0) = Z ¢o,.nCo,s(13.0) (60)
n=l

where the coeffcients ur0 and ¢0_0 are omitted. The distributions of the interacting

loads, or Lagrange multipliers, are taken as

M M

)_s(x) = Z )_s,mSin(amx) + E ,kx,2mCo,s(amx)
rn----1 m=l

(61)

M M

.kz,(x) = E Xz,imSin(amx) + E )%_2mCos(o_mx)
m----1 m=l

(62)

N

_(o) = _ _..Co4_.o)
n=l

(63)

N

_o_(o)= _, _or.si_(_.o)
n=l

(64)

N

:_=_(o)= Z :_=r.Cos(Z.o)
n----O

(65)

N

Aor(o)= _ Aor.Co_(Z.O)
n=l

(66)

where the coefficients _,2_0, Az2so, ,k,rO, and Aoro are omitted.
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Terms Omitted in the Fourier Series

Terms omitted in the truncated Fourier Series for the displacements, rotations,

and the interacting loads were determined from rigid body equilibrium conditions

for the ring and stringer, and from displacement continuity conditions between the

shell and the stiffeners. The external virtual work for the stringer and ring must

vanish for any possible rigid body motions of these elements. For the stringer these

rigid body motions are spatially uniform x-direction and z-direction displacements.

(A rigid body rotation of the stringer in the x-z plane is not considered since this

motion would violate longitudinal periodicity of the repeating units.) Vanishing of

the external virtual work for an arbitrary rigid body displacement of the stringer

in the axial direction leads to the x-direction equilibrium equation

l

/ )_xs(x) dx = 0 (67)

-I

Similarly, the equilibrium equation for a rigid body displacement of the stringer in

the z-direction is
l

f _zs(x) dx = 0 (68)
-l

If the ring is considered in its entirety, that is, as made up of an integer number

of repeating units around its circumference, the rigid body motions that lead to non-

trivial equilibrium conditions are a displacement in the x-direction and a rotation

about the x-axis. The x-direction equilibrium equation is

O

f _.(e)(R0
-O

+ e,.) dO = 0 (69)

and the moment equilibrium equation about the x-axis is

O

/
-O

_o_(e)(R0+ _r)2 de = 0 (70)
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Equilibrium Eqs. (67) to (69) imply that coefficients

A_s2o = 0 Azs2o = 0 Axro = 0 (71)

in the Fourier Series for the interacting loads, and these conditions have been taken

into account in Eqs. (61) to (63). The sine series for A0r given in Eq. (64) satisfies

the equilibrium condition given in Eq. (70).

Consider the variational form of the constraints, Eqs. (46) and (47), for the

constant components of the virtual interacting loads. These equations are

N

- _¢_o.) - (_o +_¢_2oo+
n=l

= 0 (721

N

n--_O

M

[u200 t t er¢o_0)](_Ax_0 - 0 (74)- _00 + Z (u_m0- _m0) - (u_0+
m----1

Since these equations are satisfied on the basis that _A_20 = 0, _A_20 = 0 and

_iA_0 = 0, consistent with Eq. (71), the bracketed terms in Eqs. (72) to (74) do not

necessarily vanish. The implication that these bracketed terms in Eqs. (72) to (74)

do not vanish is that displacement continuity conditions are not satisfied pointwise.

Pointwise continuity can be achieved by taking each Fourier coefficient appearing

in the bracketed terms of Eqs. (72) to (74) to be individually zero. Fourier Series

given in Eqs. (49), (52), (54), (56), (57), and (60) reflect this choice. Moreover,

Fourier coefficients u200, u_20, and ur0 represent rigid body displacement in the axial

direction for the shell, stringer, and ring, respectively, and setting them to zero can

be justified on the basis that rigid body displacement does not contribute to the

deformation of the structural elements. Since Fourier coefficient ws2o repersents

rigid body displacement of the stringer in the z-direction, it would seem that it

16



shouldbe set to zero aswell. However,to maintain continuity betweenthe stringer

and the shell in the z-direction, we impose the condition

N

wlo n -- Ws2 o = 0 (75)

n=O

to determine ws20 after obtaining the solution for the displacement components

that deform the shell; i.e., Fourier coefficients Wl0n, n = 1, ..., N, are taken to be

non-zero independent degrees of freedom since the stringer coefficient ws20 is not a

part of the solution vector.

Finally, consider the constraint equation associated with _SAoro, the spatially

uniform component of the interacting moment intensity, which was omitted in the

series given by Eq. (66). Derived from Eq. (47), this constraint equation is

M

[ _ O_raW2raO-Jr" _Oro]_Aoro -- 0 (76)
m----1

We equated the constant component of the twist, 4)0r0, to zero from the consider-

ations associated with Eq. (74). Consequently, a non-zero value of the constant

component of the interaction moment intensity, Ao_o ¢ O, would not contribute

to the equilibrium of the ring, since Ao_o and _0r0 are conjugate variables in the

external work for the ring (refer to Eq. (37)). Since _b0,-0 = 0, it is necessary that

Aoro = 0 to achieve consistent conditions for the torsional and out-of-plane bending

equilibrium of the ring. With _SAo_o = 0 in Eq. (76), the bracketed term does not

necessarily vanish, and as a result pointwise rotational continuity betwen the shell

and the ring is not assured. Pointwise rotational continuity is achieved if we take

the coefficients W2mO = O, m = 1, ..., M, as was done in the Fourier Series for the

normal displacement of the shell given by Eq. (51).

DISCRETE EQUATIONS AND THEIR SOLUTION

Transverse Shear Deformation Model
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The discrete displacementvector for the shell is the (10MN + 3M + 3N + 2) x 1

vector

: (77)

in which subvectors are

it0 = [q0,Wl00,Vl01,Wl01,¢0101,"',Vl0N,Wl0N,_)010N] T (78)

Um= [UlmO,WlmO,¢xlmO,_lml,U2ml,Ylml,V2ml,Wiml,W2ml,¢xlmi,¢x2rnl'

_Olrnl,¢O2ml, ...,UlmN,Zl2mN,VlmN,V2mN,WXmN,t°2mN,C_xl mN, (79)

Cx2mN, d/)OlmN, ¢O2mN ] r

where m = 1,..., M

The (6M + 1) x 1 discrete displacement vector for the stringer and (4N + 1) x 1

vector for the ring are

t_tr = [ql, u811, Us21, Wsll , Ws21, ¢Osl 1, d20821, .", Usl M, Us2M ,

WslM, Ws2M, _)OslM, _)Os2i] T (80)

 r,ng= (81)

in which the term Ws0 for the stringer has been omitted as discussed in reference

to Eq. (75). The 4M x 1 discrete interacting loads vector for the shell-stringer

interface and (4N + 1) x 1 vector for the shell-ring interface are

ist r = [_xsll,/_xs21,_zsll,_zs21,...,/_xslM,_xs2M,/_zslM,/_zs2M] T (82)

iring = ['_zrO, )_xrl,/_0rl, )_zrl, Aorl, ..., /_xrN, /_OrN, /_zrN, AOrN] T (83)

Classical Model

The discrete displacement vector for the shell is the (6MN + 2M + 2N + 2) x 1

vector

^T ^T ...,UM ]^TT (84)ttshel I _- [U 0 _/Zl
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in which subvectorsare

T

U0 : [q0,Wl00,Vl01,Wl01,'",Vl0N'Wl0N] ( 85/

tim _ [UlmO, WlmO, Ulrnl , tt2ml , Ylml_ Y2ml , Wlml , W2ml , ..., tllmN, U2mN,

VlrnN, V2rnN, WlmN, W2mN ] V (86)

where m = 1,...,M

The (4M + 1) x 1 discrete displacement vector for the stringer and (4N + 1) x 1

vector for the ring are

_s*r-_ [ql,Usll,Us21,Wsll'Ws21'""UslM'Us2M'WslM'Ws2M] T (87)

_Ting= [wro,'*Tl,Vrl,w_l,_orl,"',ur_,v_N,w_N,¢o_N]r (88)

The 4M x I discrete interacting loads vector for the shell-stringer interface and (4N+

1) x 1 vector for the shell-ring interface are the same as for the shear deformation

model and are given by Eqs. (82) and (83).

The approximations in Eqs. (49) through (60) for the displacements and Eqs.

(61) through (66) for the interacting loads are substituted into the virtual work

functionals for each structural element, and also substituted into the variational

form of displacement continuity constraints. Then integration over the space is

performed. (The test space of virtual displacements and the virtual interacting loads

is the same space used for the approximations in Eqs. (49-66).) This process results

in a 10MN + 13M + 11N +6 system of equations for the transverse shear deformation

model and 6MN + 10M + I0N + 6 system of equations for the classical model,

governing the displacements and the interacting loads. The governing equations

are of the form

I1 11,10 1, 00o,°0000000 //1/000
B_ B_ 0 0 0 , Qg 0

(89)
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in which sub-matrices Kll, K22 and I(33 are the stiffness matrices for the shell,

stringer, and ring, respectively. The sub-matrices Bij, i,j = 1,2, 3, in Eq. (89) are

determined from the external virtual work terms involving the interacting loads, and

the constraint Eqs. (46) to (48). The vector on the right-hand-side of Eq. (89) is the

force vector, determined from the external virtual work terms involving pressure.

The constraint equations correspond to the last three rows of the partitioned matrix

in Eq. (89). Equation (89) is first solved for the displacements in terms of interacting

loads, then this solution is substituted into the constraint equations to determine

the interacting loads. Thus, the total solution is obtained.

NUMERICAL EXAMPLE

Numerical data for the example are R = 117.5 in., 2I = 20 in. and 2RO = 5.8 in.,

which is typical of a large transport aircraft. The shell wall is a 16-ply quasi-isotropic

[+45,0, 90,-t-45, 0, 90]8 laminate of graphite/epoxy tape with a total thickness of

0.080 in. The ply thickness is 0.005 in., and the lamina material properties are

E1 = 1.85 x 1071b/in. 2, E2 = 1.64 x 1061b/in. 2, G12 = G13 = 0.87 x 106lb/in. 2,

G2a = 0.49 x 1061b/in. 2, and v12 = 0.3. For the transverse shear deformation model,

the shell wall stiffness sub-matrices of Eq. (23) are computed using these ply data

and the expressions for the stiffness elements given in the Appendix. The numerical

D

results are

A

B __

0.654

--L°?
"2.915

0

0

0.198 0

0.654 0

0 0.228

0 0.0904

-2.481 -0.0904

-0.181 -0.652

X 106 Ib/in.

0.0904

0.0904 Ib

0.652

342.52 137.25 0 0
13_25 291.53 0 -0.14 × 10 -5

0 153.21 -0.30 × 10 -_

-0.14 x 10 -5 -0.30 × 10 -5 0.30 × 10 -5

lb in.

and Aij elements for the transverse shear stiffness matrix of Eq.(24) are

A44 -- A55 = 0.544 x 102 Ib/in., A45 = 0
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The bending and stretching-bending coupling sub-matricesfor classicallamination

theory, Eq. (35), are given by

[342.52137.250
D = /137.25 291.53 0 Ibin. B = 0

[o 0 153.21

The extensional stiffness sub-matrix A is the same for classical theory and shear

deformation theory. Numerical data for the stiffeners are shown in Fig. 4. All the

results presented are for an internal pressure p = 10 psi, and the Fourier Series are

truncated at twenty-four terms in the x- and 0-directions (M = N = 24).

RESULTS AND DISCUSSION

Interacting Load Distributions

The distributions of the interacting loads between the stringer and the shell

are shown in Figs. 5 and 6. The distributions of the tangential component, _,

shown in Fig. 5 are asymmetric about the origin (or stiffener intersection), and the

maximum value in the transverse shear deformation theory is less by about 40%

with respect to the maximum value in the classical theory. The distributions of

the normal component, -_z_, are also asymmetric about the origin (Fig. 6). The

peak value of normal component computed from the classical model is 920.2 lb/in.

and occurs at x = 0.2 inches. The peak value of normal component computed

from the shear deformation model is 669.3 lb/in, and occurs at the origin. That

is, the peak value of _ is reduced by 27% in the transverse shear deformation

model with respect to its peak value in the classical model. It is interesting to note

that the asymmetric response predicted by the classical model is more predominant

compared to the transverse shear deformation model.

The distributions of the interacting loads between the ring and the shell are

shown in Figs. 7 through 10. The distributions of axial force intensity, A_, are

symmetric about the origin, and attain extremum values at the origin as shown in

Fig. 7. The extremum value of the axial force component is reduced from -144.3

21



lb/in, in the classicalmodel to -20.3 lb/in, in the transverse shear deformation

model (an 86% reduction). As shownin Fig. 8, the distributions of the tangential

force component, _0r, are antisymmetric about the origin, and the differencesin the

results for )_0r from the two models are small. The distributions of the normal force

intensity, _zr, are symmetric about the origin as shown in Fig. 9 and the predictions

obtained from the two models are essentially the same. The normal force intensity

is an extremum at the origin attaining a value of-2:316.9 lb/in, in this example.

The distributions of tangential moment component, Ao_, are symmetric about the

origin, and attain extremum values at the origin as shown in Fig. 10. The maximum

value of the tangential moment component is reduced from 525.2 lb-in./in, in the

classical model to 30.5 lb-in./in, in the transverse shear deformation model (a

94% reduction). Results for _x_ and Ao,- shown in Figs. 7 and 10, respectively,

indicate that classical theory exaggerates the response of these variables, which are

particularly sensitive to the asymmetry introduced by the ring.

Stiffener Actions

The distributions of the force and moment resultants in the stiffeners are shown

in Figs. 11 through 13. The stringer axial force and bending moment distributions

(Fig. 11) are slightly asymmetric about the origin, and only small differences are

predicted between the two models.

The distributions of the circumferential force and in-plane bending moment in

the ring are shown in Fig. 12, and, again, there are only small differences in these

results from the two models. However, the torque and out-of-plane bending moment

in the ring are more sensitive to the change in models as shown Fig. 13. The

distribution of the out-of-plane bending moment is symmetric about the origin and

has reduced magnitudes in the transverse shear deformation model compared to the

classical model. In the vicinity of origin, the transverse shear deformation model

predicts less severe gradients in the distribution of out-of-plane bending moment

compared to the classical model. As shown in Fig. 13, the distribution of torsion
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is antisymmetric about the origin, and has reducedmagnitudes in classical model

compared to the shear deformation model.

Shell Response

The distribution of the normal displacement along z-curve midway between the

stringers (0 = - O), and along the 0-curve midway between the rings (x = - I),

are shown in Fig. 14. As depicted in this figure, there is a negligible difference be-

tween the results from the transverse shear deformation model and classical model.

Also, there is negligible difference in the axial and circumferential normal strain

distributions between the two models as shown in Figs. 15 and 16.

A Ring with Symmetric Cross Section

As a benchmark for comparing transverse shear deformation model with the

classical model, analyses were performed for a ring with symmetric cross section.

In this case the only change made to the example under discussion is to set the

bending-coupling stiffeness EIzx of the ring to zero from its value given in Fig.

4. Consequently, the 0-axis, as well as the x-axis, are axes of symmetry for the

repeating unit. Symmetry about the 0-axis implies there is no out-of-plane bending

and torsion of the ring; i.e., ur(O) = ¢0r(0) = Czr(0) = A_(0) = Ao,-(O) = 0 for

-O<0<O.

The distributions of the tangential interacting loads between the shell and the

stiffeners are shown in Figs. 17 and 18. For the tangential force intensity be-

tween the stringer and shell (Fig. 17), the difference between the results from the

transverse shear deformation model and classical model are small. For tangential

force intensity between the ring and shell (Fig. 18), the differences in the results

from the two models are larger than those for the stringer-shell tangential force

intensity. However, differences between the two models for the ring-shell tangential

force intensity are not excessively large. The tangential force intensity components

between the stiffeners and shell are the most sensitive variables to a change in struc-

tural model. All other dependent variables are only affected by negligible amounts

to the change in structural models.
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CONCLUSIONS

The results for the shell-stringer interacting loads )_,s and £_s, and shell-ring

interacting loads )_,r and Aor, indicate that the classical structural model exagger-

ates the asymmetric response compared to the transverse shear deformation model.

The predicted extremum values of these interacting load components are smaller in

the transverse shear deformation theory than in the classical theory. The large dis-

crepancy is due to the freedom in the transverse shear deformation model between

the stringer's bending rotation and the ring's torsional rotation at the stiffener in-

tersection, or joint. In the classical model these joint rotations are constrained to

be the same. Shell strains and displacements are not significantly different in the

two structural models.
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Appendix

ELEMENTS OF STIFFNESS MATRIX FOR A CYLINDRICAL SHELL

BASED ON TRANSVERSE SHEAR DEFORMATION THEORY

Based on the transverse shear deformation theory, the elements Aij, Bij, and

Dij of the stiffness matrices, in Eqs. (23) and (24) for the constitutive law for a

laminated shell wall, are given by

All =j(¢ Ql1(1 +-_)dz

A12 =_Q12dz

A16 =_t Q16dz

A22 = Q22(1+ dz

A26 = Q26(1 + dz

_t z -1A66 = 066(1+_) dz

Bll =j(Ql,Z(1 +R)dZ

B12 = ft Q12zdz

fit z )dz=  h z(1 +
_ Z 2

B_6 = ft Qlo'_-_dz

J_t z -1B22 = 1022z(1+_) dz

_t Z Z --1B16 = 0262(]. "-_ _-_)(1 + _)

_- Z 2 Z --1B_6= Q26_-_(1+_) dz

B61 = ft Q16zdz

J z -1B62= t016z(1+ _) dz

dz
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J(t Z Z --1B16= 066z(1+0-_)(1+_) dz

J(t - Z2 Z --1B_6= Q66_-_(1+_) dz

Dl1 =/011Z2(1 "b R)dZ

D12 =/t Q12z2 dz

D_6 =jft 016z2(1 4-R)dZ

e_o= 01_ez

D22 = 022z2(1 + dz

Z Z --1D_ = 026z2(1+ _--_)(1+ _) dz

D_

06't

D_

Z 3 Z --1= 026_--/_(1+_) dz

J_t Z 2 Z --1= 06622(1+ _--_) (i + _) dz

_t z3 z z -idz= 066_-/_(I + _--_)(I + _)

J_t Z4 Z --1D_= 0_6_-_(1+_) dz

where Qij are the transformed reduced stiffnesses given in the text by Jones (1975).

Based on the assumption of constant transverse shear strain distribution through

the thickness, the transverse shear stiffnesses are given by

z )dzA44 ---- C44 (1 +

A45 = jft C45dz

SA55 = C_5(1 + dz

where

C44 -- G13Cos2 a q- G2aSin 2 o_
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C4s =(G13 - G23)Coso_Sin_

C55 =G23C0$2 0_ + Ga3Sin2a

in which a is the ply orientation angle.

Based on the assumption of constant transverse shear stress distribution through

the thickness, the transverse shear stiffnesses are given by

k22 ka2 kla
A44 = --_ A4s - - k Ass = --_

in which k = kllk22 - k122. The coemcients kij are given by

1 f Z --1

_11 -_--_- It C44(1 -1- _)

1

k12 :_ _tc45 dz

dz

where
Cos2a Sin2a

+--
(;44- G13 G23

1 1

C45 =( G13 623 )CosaSina

Sin2a Cos2a
c55 =_ +

Gla G23
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Fig. 1. Repeating unit of an orthogonally stiffened cylindrical shell.
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Fig. 2. Interacting line load intensities shown in the positive
sense acting on the inside surface of the shell.
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Fig. 3. Displacements and rotations for (a) shell, (b) stringer, and (c) ring



z

X

z

Stringer
EA - 4.04 x 106 lb

EIao = 14.2 x 106 lb-in. 2

(GA)xz = 1.23 x 106 lb

e s = 1.10 in.

Ring
EA = 5.92 x 106 lb

EI_ = 26.9 x 106 lb-in. 2
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Fig. 4. Stiffener data.
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